

BASICS OF PYTHON PROGRAMMING

CLASS VIII TERM II

D.A.V GROUP OF SCHOOLS

1

INDEX

SNO CONTENT PAGE NUMBER

1 Basics of Programming in Python 2

2 Input and Output 8

3 Tokens 13

4 Control Structures – Decision Control statements 22

5 Control Structures – Iterative Statements 28

6 Lab Exercises 30

7 Bibliography 37

2

Chapter 1

 Basics of Programming in Python

Introduction

Python is a general purpose programming language created by Guido Van

Rossum from CWI (Centrum Wiskunde & Informatica) which is a National

Research Institute for Mathematics and Computer Science in Netherlands. The

language was released in I991. Python got its name from a BBC comedy series

from seventies- “Monty Python’s Flying Circus”. Python is a case sensitive

programming language.

Key Features of Python

✔ It is a general purpose programming language which can be used for

both scientific and non-scientific programming.

✔ It is a platform independent programming language.

✔ The programs written in Python are easily readable and understandable.

The version 3.x of Python IDLE (Integrated Development Learning Environment)

is used to develop and run Python code. It can be downloaded from the web

resource www.python.org.

Programming in Python

In Python, programs can be written in two ways namely interactive mode and

Script mode. The Interactive mode allows us to write codes in Python command

prompt (>>>) whereas in script mode programs can be written and stored as

separate file with the extension .py and executed. Script mode is used to create

and edit python source file.

Interactive mode Programming

In interactive mode Python code can be directly typed and the interpreter

displays the result(s) immediately. The interactive mode can also be used as a

simple calculator

3

Invoking Python IDLE

The following command can be used to invoke Python IDLE from Window OS.

Now Python IDLE window appears as shown below

The prompt (>>>) indicates that Interpreter is ready to accept instructions.

Therefore, the prompt on screen means IDLE is working in interactive mode.

Now let us try as a simple calculator by using a simple mathematical expressions.

Start→AllPrograms→Python3.x→IDLE(Python3.x)

MenuBar TilteBar

Pythonprompt(>>>)

15

505

25

Example1:

>>>print (“Python Programming Language”)

Python Programming Language

>>>x=10

>>>y=20

>>>print(“TheSum =”,z)

The Sum = 30

Example2:

4

Python Interactive Window

Script mode Programming

Basically, a script is a text file containing the Python statements. Python Scripts

are reusable code. Once the script is created, it can be executed again and again

without retyping. The Scripts are editable.

Creating Scripts in Python

Step 1: Choose File → New File or press Ctrl + N in Python shell window

5

Step 2: An untitled blank script text editor will be displayed on screen as shown

below

Step 3: Type the following code in the script editor.

a=100

b = 350

c = a+b

print ("The Sum=", c)

Step 4: Saving Python script

a) Choose File → Save or Press Ctrl + S

a=100

b=350

c=a+b

print("TheSum=",c)

6

b) Now, Save As dialog box appears on the screen as shown

In the Save As dialog box, select the location where you want to save your

Python code, and type the file name in File Name box. Python files are by default

saved with extension .py. Thus, while creating Python scripts using Python Script

editor, no need to specify the file extension.

FileLocation

FileName(demo1)

FileType(Pythonfile(.py))

7

Finally, click Save button to save your Python script.

Executing Python Script

Choose Run → Run Module or Press F5

If your code has any error, it will be shown in red color in the IDLE window,

and Python describes the type of error occurred. To correct the errors, go

back to Script editor, make corrections, save the file using Ctrl + S or File →

Save and execute it again.

For all error free code, the output will appear in the IDLE window

of Python as shown below

a=100

b=350

c=a+b

print("TheSum=",c)

8

Chapter 2

Input and Output

Input and Output Functions

A program needs to interact with the user to accomplish the desired

task; this can be achieved using Input-Output functions. The input()

function helps to enter data at run time by the user and the output function

print() is used to display the result of the program on the screen after

execution.

The print() function

In Python, the print() function is used to display result on the screen.

The syntax for print() is as follows: print(“ Content to be displayed “)

Example

print(“string to be displayed as output”)

print (variable)

print(“String to be displayed as output”,variable)

print(“String1”,variable,“String2”,variable,“String3”……)

9

The print () evaluates the expression before printing it on the monitor. The

print () displays an entire statement which is specified within print ().

Comma (,) is used as a separator in print () to print more than one item.

Input() Function

In Python, input() function is used to accept data as input at run time.

The syntax for input() function is,

 variable = input(“ Prompt String”)

Where, prompt string in the syntax is a statement or message to

the user, to know what input can be given.

If a prompt string is used, it is displayed on the monitor; the user can

provide expected data from the input device.

The input() takes whatever is typed from the keyboard and stores the

entered data in the given variable.

Example

>>>print(“Welcome to Python Programming”)

Welcome to Python Programming

>>>x=5

>>>y=6

>>>z=x+y

>>>print(z)

11

>>>print(“The sum =”,z)

The sum = 11

>>>print(“Thesumof”,x,“and”,y,“is”,z)The sum

10

If prompt string is not given in input() no message is displayed on the

screen, thus, the user will not know what is to be typed as input.

Note that in example-2, the input() is not having any prompt string, thus

the user will not know what is to be typed as input. If the user inputs

irrelevant data as given in the above example, then the output will be

unexpected. So, to make your program more interactive, provide prompt

string with input().The input () accepts all data as string or characters but

Example1:input() with prompt string

>>>city=input(“Enter Your City:”)Enter Your City: Madurai

>>>print(“I am from“,city) I am from Madurai

Example2:input() without prompt string

 >>>city=input()

 Rajarajan

>>>print(“I am from ”,city)

I am from Rajarajan

x=int(input(“EnterNumber1:”))

y=int(input(“EnterNumber2:”))

print (“The sum = ”, x+y)

Output:

EnterNumber1:34

EnterNumber2:56 The sum = 90

Example3:

11

not as numbers. If a numerical value is entered, the input values should be

explicitly converted into numeric data type. The int() function is used to

convert string data as integer data explicitly.

Comments in Python

Comments are statements that we use to make the code easier to

understand. They are not read by the Python interpreter when it executes

the code.

In Python, comments begin with hash symbol (#). The lines that begins with

are considered as comments and ignored by the Python interpreter.

Comments may be single line or no multi-lines. The multiline comments

should be enclosed within a set of ''' '''(triple quotes) as given below.

It is Single line Comment

''' It is multiline comment

which contains more than one line '''

Example4:Alternate method for the above program

x,y=int(input("EnterNumber1:")),int(input("EnterNumber2:"))

print("X=",x,"Y=",y)

Output:

EnterNumber1:30

EnterNumber2:50

X=30 Y=50

12

Indentation

Python uses whitespace such as spaces and tabs to define program blocks

whereas other languages like C, C++, java use curly braces { } to indicate

blocks of codes for class, functions or body of the loops and block of

selection command.

The number of whitespaces (spaces and tabs) in the indentation is not fixed,

but all statements within the block must be indented with same amount of

spaces.

13

Chapter 3

 Tokens

Tokens are the smallest units of a Python program and are the building

blocks of its syntax. They are a set of one or more characters that have a

meaning together and cannot be broken down further without losing their

significance.

Python breaks each logical line into a sequence of elementary

lexical components known as Tokens. The normal token types

are

1) Identifiers,

2) Keywords,

3) Operators,

4) Delimiters and

5) Literals.

Whitespace separation is necessary between tokens, identifiers or keywords.

Identifiers

An Identifier is a name used to identify a variable, function, class, module or

object.

Rules to be followed when creating an identifier are-

• An identifier must start with an alphabet (A..Z or a..z) or underscore
(_).

• Identifiers may contain digits (0 .. 9)

• Python identifiers are case sensitive i.e. uppercase and lowercase
letters are distinct.

• Identifiers must not be a python keyword.

Python does not allow punctuation character such as %,$, @ etc., within

identifiers

14

Example of valid identifiers

Sum, total_marks, regno, num1

Example of invalid identifiers

12Name, name$, total-mark, continue

Keywords

Keywords are special words used by Python interpreter to recognize the

structure of program. As these words have specific meaning for interpreter,

they cannot be used for any other purpose. List of keywords in Python are:

False class finally is return

None continue for lambda try

True def from nonlocal while

and del global not with

As elif if or yield

assert else import pass

break except in raise

Operators

In computer programming languages operators are special symbols which

represent computations, conditional matching etc. The value of an operator

used is called operands.

Operators are categorized as Arithmetic, Relational, Logical, Assignment

etc.

Value and variables when used with operator are known as operands.

15

Arithmetic Operators

An arithmetic operator is a mathematical operator that takes two operands

and performs a calculation on them. They are used for simple arithmetic.

Most computer languages contain a set of such operators that can be used

within equations to perform different types of sequential calculations.

Python supports the following Arithmetic operators.

Operator - Operation Examples Result

Assume a=100 and b=10. Evaluate the following expressions

+ (Addition) >>> a + b 110

- (Subtraction) >>>a – b 90

* (Multiplication) >>> a*b 1000

/ (Division) >>> a / b 10.0

% (Modulus) >>> a % 30 10

** (Exponent) >>> a ** 2 10000

// (Floor Division) >>> a//30 (Integer Division) 3

16

Relational or Comparative Operator

A Relational operator is also called as Comparative operator

which checks the relationship between two operands. If the

relation is true, it returns True; otherwise it returns False.

Python supports following relational operators

Operator - Operation Examples Result

Assume the value of a=100 and b=35. Evaluate the following

expressions.

== (is Equal) >>> a==b False

#Demo Program to test Arithmetic Operators

 a=100

b=10

print ("The Sum = ",a+b)

print ("The Difference = ",a-b)

print ("The Product = ",a*b)

print("TheQuotient=",a/b)

print ("The Remainder= ",a%30)

print ("The Exponent= ",a**2)

print ("The Floor Division =",a//30)

Output:

TheSum =110

TheDifference =90

TheProduct =1000

TheQuotient =10.0

TheRemainder =10

The Exponent =10000

The Floor Division = 3

17

> (Greater than) >>> a > b True

< (Less than) >>> a < b False

>= (Greater than or Equal

to)

>>> a >= b True

<= (Less than or Equal to) >>> a <= b False

!= (Not equal to) >>> a != b True

Output:

EnteraValueforA:35

EnteraValueforB:56

A=35 and B =56

The a==b =False

The a>b =False

#Demo Program to test Relational Operators

 a=int (input("Enter a Value for A:"))

 b=int (input("Enter a Value for B:"))

 print ("A = ",a," and B = ",b)

 print ("The a==b = ",a==b)

 print ("The a > b = ",a>b)

 print ("The a < b = ",a<b)

 print("Thea>=b=",a>=b)

 print("Thea<=b=",a<=b)

 print ("The a != b = ",a!=b)

18

The a<b =True

The a>=b =False

The a<=b =False

The a!=b =True

Logical Operator

In python, Logical operators are used to perform logical operations on the

given relational expressions. There are three logical operators they are

and, or and not.

Operator Example Result

Assume a = 97 and b = 35, Evaluate the following Logical

expressions

Or >>> a>b or a==b True

And >>> a>b and a==b False

Not >>> not a>b False i.e. Not True

Example – Code Example - Result

 a=int (input("Enter a Value for A:"))

b=int (input("Enter a Value for B:"))

print ("A = ",a, " and b = ",b)

print ("The a > b or a == b = ",a>b or a==b)

print ("The a > b and a == b = ",a>b and

a==b)

print ("The not a > b = ",not a>b)

Enter a Value for

A:50

Enter a Value for

B:40

A = 50 and b = 40

The a > b or a == b = True

The a > b and a == b =

False

The not a > b = False

19

Assignment Operator

In Python, = is a simple assignment operator to assign values to

variable.

 Let a = 5 and b = 10 assigns the value 5 to a and 10 to b

These two assignment statement can also be given as a,b=5,10

that assigns the value 5 and 10 on the right to the variables a and

b respectively.

There are various compound operators in Python like +=, -=, *=,

/=, %=, **= and //= are also available.

Operators used in Strings : + and *

The + operator is used to concatenate strings and * operator is used to replicate

strings

Example Output

a=”Namaste” NamasteEveryone

b=”Everyone”

print(a+b)

print(a*2) NamasteNamaste

Delimiters

Python uses the symbols and symbol combinations as delimiters in

expressions, lists, dictionaries and strings. Following are the delimiters.

() [] { }

, : . ‘ = ;

+= -= *= /= //= %=

&= |= ^= >>= <<= **=

20

Literals

Literal is a raw data given to a variable or constant. In Python, there are various

types of literals like Numeric, String ,Boolean. A Boolean literal can have any of

the two values: True or False.

Ex:

A=10

In the above example 10 is a numeric literal

B=”Happy”

Happy is a string literal

Escape Sequences

In Python strings, the backslash "\" is a special character, also called the

"escape" character. It is used in representing certain whitespace characters:

"\t" is a tab, "\n" is a newline, and "\r" is a carriage return. For example to print

the message "It's raining", the Python command is

>>> print(“It\’s raining”) will give the output as It’s raining

Python supports the following escape sequence characters.

Escape

sequence

character

Description Example Output

\\ Backslash >>> print("\\test") \test

\’ Single-

quote

>>> print("Doesn\'t") Doesn't

\” Double-

quote

>>> print("\"Python\"") "Python"

21

\n New line print("Python","\n","Lan

g..")

Python Lang..

\t Tab print("Python","\t","Lang

..")

Python Lang..

Python Data types

All data values in Python are objects and each object or value has

type. Python has Built-in or Fundamental data types such as

Number, String, Boolean, tuples, lists, sets and dictionaries etc.

The data types which will be handled here are integer, float and string.

Integers – This data type can contain positive or negative whole numbers

(without fractions or decimals). In Python there is no limit to how long an integer

value can be.

Float – It is a real number with a floating point representation. It is specified by

a decimal point.

String – are arrays of bytes representing Unicode characters. A string is a

collection of one or more characters put in a single quote, double quote or triple

quote.

22

 Chapter 4

Control Structures - Decision Control Statements

Introduction

Programs may contain set of statements. These statements are the

executable segments that yield the result. In general, statements are

executed sequentially, that is the statements are executed one after

another.

There may be situations in our real life programming where we need to skip

a segment or set of statements and execute another segment based on the

test of a condition. This is called alternative or branching.

Also, we may need to execute a set of statements multiple times, called

iteration or looping. In this chapter we are to focus on the various control

structures in Python, their syntax and learn how to develop the programs

using them.

Control Structures

A program statement that causes a jump of control from one part of the

program to another is called control structure or control statement. These

control statements are compound statements used to alter the control flow

of the process or program depending on the state of the process.

Control Structures can be Sequence , Selection or Iterative statements.

Sequential

Alternative or Branching

Iterative or Looping

23

Sequential Statement

A sequential statement is composed of a sequence of statements

which are executed one after another. A code to print your name,

address and phone number is an example of sequential statement.

Alternative or Branching statement

In our day-to-day life we need to take various decisions and choose an

alternate path to achieve our goal. May be we would have taken an

alternate route to reach our destination when we find the usual road by

which we travel is blocked. This type of decision making is what we are to

learn through alternative or branching statement. Checking whether the

given number is positive or negative, even or odd can all be done using

alternative or branching statement.

Python provides the following types of alternative or branching statements:

Simple if statement

If else statement

If elif statement

#Program to print your name and address-example for sequential statement

print("Hello!This is Shyam")

print("43,SecondLane,NorthCarStreet,TN")

Output

Hello!This is Shyam

43,SecondLane,NorthCarStreet,TN

Example

24

Simple if statement

Simple if is the simplest of all decision making statements.

Condition should be in the form of relational or logical expression.

In the above syntax if the condition is true statements - block 1 will be

executed.

As you can see in the second execution no output will be printed, only the

Python prompt will be displayed because the program does not check the

alternative process when the condition fails.

Syntax:

if<condition>:

statements-block1

#Program to check the age and print whether eligible for voting x=int

(input("Enter your age :"))

If x >=18:

print("You are eligible for voting")

Output1:

Enteryourage:34

You are eligible for voting

Output2:

Enter your age: 16

>>>

Example

25

if… else statement

The if .. else statement provides control to check the true block as well as

the false block. Following is the syntax of ‘if..else’ statement.

Syntax:

if <condition>:

 statements-block1

statements-block2

If condition is true

condition
ifconditionis

false

Statementblock

-2

Statementblock

-1

 Start

Stop

26

if..elif...else statement:

When we need to construct a chain of if statement(s) then ‘elif ’ clause can be

used instead of ‘else’.

In the syntax of if..elif..else mentioned above, condition-1 is tested if it is

true then statements-block1 is executed, otherwise the control checks

condition-2, if it is true statements- block2 is executed and even if it fails

statements-block n mentioned in else part is executed.

Example

Write a program to assign grade as per the following rules

Avg >90 Grade A

Example :#Program to check if the accepted numberis odd or even
a=int(input("Enter any number:"))

if a%2==0:

print(a,"is an even number")

else:

print(a,"is an odd number")

Output1:

Enteranynumber:56

56 is an even number

Output2:

Enter any number:67

67 is an odd number

Syntax:

if <condition-1>:

statements-block1

elif <condition-2>:

statements-block2

statements-blockn

27

Avg between 80 to 90 B

Avg less than 80 C

tot= int(input(“enter the total of 5 subject marks”)

avg= tot // 5

if avg > 90:

 print(“Grade A”)

elif avg >80:

 print(“Grade B”)

else:

 print(“Grade C”)

28

Chapter 5

Control Structures - Iterative statements

Iteration or loop are used in situation when the user need to execute a

block of code several of times or till the condition is satisfied. A loop

statement allows to execute a statement or group of statements multiple

times.

Python provides two types of looping constructs:

for loop

 while loop

for loop

The for loop is the most comfortable loop. It is also an entry check

loop. The condition is checked in the beginning and the body of the

loop(statements-block 1) is executed if it is only True otherwise the

loop is not executed.

Condition
False

Statement1

Statement2

...

Else

Statement1

Statement2

...

Statements of

Program

29

Syntax

for counter_variable in range(start ,stop):

 Statement block 1

Example:

for i in range(1,10):

 print(i)

The above code will display 1 to 9 since the stop value is exclusive.

while loop

In Python, we use a while loop to repeat a block of code until a certain condition

is met. For example,

Syntax

while <condition>:

 body of the while loop

Example

v=1

while v <=4:

 print(v)

 v = v + 1

output :

1

2

3

4

30

PYTHON – LAB ACTIVITIES

1. Write a program to print “Hello World!”

print("Hello World!")

2. Write a program that inputs the name of the user and prints it in the

given format

Example Input: Ram

Output: Namaste Ram, welcome to Python!

name=input("Enter your name: ")

print("Namaste",name,"welcome to Python!")

3. Write a program to input a number and display its square and cube

Get input from the user

number = int(input("Enter a number: "))

Calculate the square and cube

square = number ** 2

cube = number ** 3

Print the results

print("The square of",number,"is",square)

print("The cube of",number,"is",cube)

4. Write a program to input 2 numbers and perform addition, subtraction

and multiplication on them.

Get input from the user

num1 = float(input("Enter the first number: "))

num2 = float(input("Enter the second number: "))

Perform arithmetic operations

addition = num1 + num2

subtraction = num1 - num2

multiplication = num1 * num2

Print the results

print("Addition: ", num1, "+", num2, "=", addition)

31

print("Subtraction: ", num1, "-", num2, "=", subtraction)

print("Multiplication: ", num1, "*", num2, "=", multiplication)

5. Write a program to get the length and breadth and calculate the area,

perimeter of rectangle

Get input from the user

length = float(input("Enter the length of the rectangle: "))

breadth = float(input("Enter the breadth of the rectangle: "))

Calculate area and perimeter

area = length * breadth

perimeter = 2 * (length + breadth)

Print the results

print("Area of the rectangle: ", area)

print("Perimeter of the rectangle: ", perimeter)

6. Write a program to get the base and height of a triangle and computes

its area

Get input from the user

base = float(input("Enter the base of the triangle: "))

height = float(input("Enter the height of the triangle: "))

Calculate area of the triangle

area = 0.5 * base * height

Print the result

print("Area of the triangle: ", area)

7. Write a program to get the principal amount, rate of interest, and time

period to compute simple interest.

Get input from the user

principal = float(input("Enter the principal amount: "))

rate_of_interest = float(input("Enter the rate of interest: "))

time_period = float(input("Enter the time period (in years): "))

32

Calculate simple interest

simple_interest = (principal * rate_of_interest * time_period) / 100

Print the result

print("Simple Interest: ", simple_interest)

8. Write a program to get the radius and height and calculate the surface

area of the cylinder (7thMath)

Get input from the user

radius = float(input("Enter the radius of the cylinder: "))

height = float(input("Enter the height of the cylinder: "))

Calculate the surface area of the cylinder

Surface Area = 2 * π * r * (r + h)

pi = 3.14159 # Approximation of π

surface_area = 2 * pi * radius * (radius + height)

Print the result

print("Surface Area of the cylinder: ", surface_area)

9. Write a program that reads a number and checks if it is odd or even

Get input from the user

number = int(input("Enter a number: "))

Check if the number is even or odd

if number % 2 == 0:

 print(number, "is even.")

else:

 print(number, "is odd.")

10. Write a program to input 2 numbers and perform division by checking

the non-zero condition.

Get input from the user

num1 = float(input("Enter the first number: "))

num2 = float(input("Enter the second number: "))

Check for division by zero before performing division

33

if num2 != 0:

 division = num1 / num2

else:

 division = "Undefined (cannot divide by zero)"

Print the results

print("Division: ", num1, "/", num2, "=", division)

11. Write a program that reads a number and checks if it is positive,

negative, or zero

Get input from the user

number = float(input("Enter a number: "))

Check if the number is positive, negative, or zero

if number > 0:

 print(number, "is positive.")

elif number < 0:

 print(number, "is negative.")

else:

 print(number, "is zero.")

12. Write a program that checks the age of a person to determine if they are

eligible to vote, and also checks for invalid age input (ages above 100

and below 0).

Get input from the user

age = int(input("Enter your age: "))

Check for invalid age

if age < 0 or age > 100:

 print("Invalid age.")

Check eligibility to vote

elif age >= 18:

 print("Eligible to vote.")

else:

 print("Not eligible to vote.")

34

13. Write a program to solve a quadratic equation of the form ax2+bx+c=0

and find its roots

Input coefficients a, b, and c

#2 2 5 - complex roots

#2 4 2 - Equal roots

Get coefficients from the user

a = float(input("Enter coefficient a: "))

b = float(input("Enter coefficient b: "))

c = float(input("Enter coefficient c: "))

Calculate the discriminant

discriminant = (b * b) - (4 * a * c)

Check the nature of the roots

if discriminant > 0:

 root1 = (-b + (discriminant ** 0.5)) / (2 * a)

 root2 = (-b - (discriminant ** 0.5)) / (2 * a)

 print("Roots are real and different.")

 print("Root 1:", root1)

 print("Root 2:", root2)

elif discriminant == 0:

 root = -b / (2 * a)

 print("Roots are real and the same.")

 print("Root:", root)

else:

 print("Roots are complex and different.")

14. Write a program that read 3 numbers and display the bigger number and

no two numbers should be the same.

Get input from the user

num1 = float(input("Enter the first number: "))

num2 = float(input("Enter the second number: "))

num3 = float(input("Enter the third number: "))

Check if any two numbers are the same

if num1 == num2 or num1 == num3 or num2 == num3:

35

 print("Error: Please enter three different numbers.")

else:

 # Check which number is the biggest

 if num1 > num2 and num1 > num3:

 print(num1, "is the biggest.")

 elif num2 > num1 and num2 > num3:

 print(num2, "is the biggest.")

 else:

 print(num3, "is the biggest.")

15. Write a program to print numbers from 1 to 10

Print numbers from 1 to 10

for i in range(1, 11):

 print(i)

16. Write a program to read your name and display it 10 times

Get input from the user

name = input("Enter your name: ")

Display the name 10 times

for i in range(10):

 print(name)

17. Write a program that displays the multiplication table for the first 10

multiples of a given number

Get input from the user

number = int(input("Enter a number: "))

Display the multiplication table

for i in range(1, 11):

 print(number, "X", i, "=", number * i)

18. Write a program that displays the first 10 odd and even numbers

Display the first 10 even numbers

print("First 10 even numbers:")

for i in range(1,10):

 print(i * 2)

36

Display the first 10 odd numbers

print("First 10 odd numbers:")

for i in range(1,10):

 print(i * 2 + 1)

19. Code to display the pattern below (Hint:String Multiplication):

*

**

rows=5

for i in range(1, rows + 1):

 print("*" * i)

20. Write a python code to find whether the given number is perfect cube

Get input from the user

number = int(input("Enter a number: "))

Initialize a variable for checking

checkcube = 0

Check for perfect cube using a for loop

for i in range(number + 1):

 if i **3 == number:

 checkcube = 1

Display result

if checkcube==1:

 print(number, "is a perfect cube.")

else:

 print(number, "is not a perfect cube.")

37

Bibliography / References

Textbook of Python Class XII

https://www.tntextbooks.in/p/12th-books.html

https://www.programiz.com/python-programming

https://www.w3schools.com/python/

https://www.programiz.com/python-programming
https://www.w3schools.com/python/

